miércoles, 21 de abril de 2010

SATA


Serial ATA

SATA : Serial Advanced Technology Attachment

Puertos SATA en una placa base o placa madre.

Tipo masivo interno
Historia de producción
Diseñado en 2003
Sustituye a ATA o IDE
Especificaciones
Conectable en caliente Si, con soporte de otros componentes del sistema.
Externo Si, con eSATA. Y por USB, con case o caja externa.
Cable Cable plano
Pines 7
Patillaje
Pin 1 GND Tierra
Pin 2 HT+/DR+ Transmisión diferencial +
Pin 3 HT-/DR- Transmisión diferencial -
Pin 4 GND Tierra
Pin 5 HR-/DT- Recepción diferencial -
Pin 6 HR-/DT+ Recepción diferencial +
Pin 7 GND Tierra

Serial ATA o SATA (acrónimo de Serial Advanced Technology Attachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento, como puede ser el disco duro, u otros dispositivos de altas prestaciones que están siendo todavía desarrollados. Serial ATA sustituye a la tradicional Parallel ATA o P-ATA. SATA proporciona mayores velocidades, mejor aprovechamiento cuando hay varios discos, mayor longitud del cable de transmisión de datos y capacidad para conectar discos en caliente (con la computadora encendida).

Actualmente es una interfaz extensamente aceptada y estandarizada en las placas base de PC. La Organización Internacional Serial ATA (SATA-IO) es el grupo responsable de desarrollar, de manejar y de conducir la adopción de especificaciones estandarizadas de Serial ATA. Los usuarios de la interfaz SATA se benefician de mejores velocidades, dispositivos de almacenamientos actualizables de manera más simple y configuración más sencilla. El objetivo de SATA-IO es conducir a la industria a la adopción de SATA definiendo, desarrollando y exponiendo las especificaciones estándar para la interfaz SATA.


Historia [editar]A principios del año 2000 se formó un grupo con el nombre de Serial ATA Working Group. Los miembros fundadores del grupo continuaron formando el Serial ATA II Working Group para seguir con el desarrollo de la siguiente generación de especificaciones para Serial ATA. La nueva organización, SATA-IO, toma las tareas de mantenimiento de las especificaciones, promoción y venta de Serial ATA. Además de crear un futuro interfaz con especificaciones de velocidad que encabecen la tecnología de almacenamiento durante la siguiente década.

El cambio de Serial ATA II Working Group a una asociación industrial formal fue tomado por el Serial ATA II Steering Committee que encontró que un beneficio comercial mutuo les daría mayor ventaja a la hora de promover cualquier actividad necesaria para la adopción de Serial ATA. La SATA-IO se dedica a construir un mercado robusto y maduro para las ofertas de Serial ATA. Y, en su caso, seguirá actividades tales como: un programa de concienciación tecnológica y de logo, laboratorios de interoperabilidad y encuentros cara a cara.

La diferencia principal entre un grupo de trabajo y una asociación industrial formal es que la segunda es una entidad independiente legalmente. Así es posible tener un presupuesto más formalizado y es capaz de amparar actividades para el desarrollo de SATA. Los miembros de SATA-IO tienen la capacidad de influir o contribuir directamente al desarrollo de las especificaciones de SATA.




Miembros [editar]La adición de miembros a SATA-IO está abierta a nuevas compañías. Ser miembro incluye los siguientes beneficios:

Acceso solo para miembros a la especificación y al sitio Web del desarrollo de las especificaciones.
Elegibilidad para participar en los laboratorios de interoperabilidad de Serial ATA (Plugfests).
Oportunidades para participar en programas de marketing y eventos, como cartas de prensa, muestras de productos en el sitio Web, etc.
Uso de los logos SATA-IO.
Descuentos para eventos SATA-IO.
Promoción de la compañía y enlaces desde el sitio Web de SATA-IO.
Los promotores del grupo SATA-IO incluyen a Dell Computer Corporation, Maxtor Corporation, Seagate Technology, Western Digital Corporation, Hitachi High-Technologies Corporation y Vitesse Semiconductor. La lista de los miembros actuales de SATA-IO se puede encontrar en la página oficial de SATA-IO. El número actual de miembros es de 206 compañías que incluyen a todas las compañías conocidas del mundo informático, ya sea de software como de hardware. Sun Microsystems, Hewlett-Packard, Samsung, IBM, etc.

Para hacerse miembro del SATA-IO hay que firmar el acuerdo de calidad de miembro (Membership Agreement) y pagar una couta anual de $1,500 en las oficinas de SATA-IO.

IDE


IDE

IDE : Integrated Drive Electronics
PATA : Parallel Advanced Technology Attachment



Conector ATA hembra en un cable a la izquierda, dos conectores ATA en placa madre a la derecha

Tipo masivo interno
Historia de producción
Diseñador Western Digital
Diseñado en 1986
Especificaciones
Conectable en caliente no
Externo no
Ancho 16 bits
Ancho de banda 16 MB/s originalmente
Después 33, 66, 100, 133 y 166 MB/s
Max nº dispositivos 2 (maestro/esclavo)
Protocolo Paralelo
Cable Cable de cinta plano de 40 hilos, posteriormente incrementado a 80 por seguridad.
Pines 40
Patillaje
Pin 1 Reset
Pin 2 Ground
Pin 3 Data 7
Pin 4 Data 8
Pin 5 Data 6
Pin 6 Data 9
Pin 7 Data 5
Pin 8 Data 10
Pin 9 Data 4
Pin 10 Data 11
Pin 11 Data 3
Pin 12 Data 12
Pin 13 Data 2
Pin 14 Data 13
Pin 15 Data 1
Pin 16 Data 14
Pin 17 Data 0
Pin 18 Data 15
Pin 19 Ground
Pin 20 Key o VCC_in
Pin 21 DDRQ
Pin 22 Ground
Pin 23 I/O write
Pin 24 Ground
Pin 25 I/O read
Pin 26 Ground
Pin 27 IOC HRDY
Pin 28 Cable select
Pin 29 DDACK
Pin 30 Ground
Pin 31 IRQ


Cable IDE clásico de 40 conectores.El puerto IDE (Integrated device Electronics) o ATA (Advanced Technology Attachment) controla los dispositivos de almacenamiento masivo de datos, como los discos duros y WATAPI (WAdvanced Technology Attachment Packet Interface) y además añade dispositivos como las unidades CD-ROM.


En el sistema IDE el controlador del dispositivo se encuentra integrado en la electrónica del dispositivo. Las diversas versiones de sistemas ATA son:

Parallel ATA (se está utilizando la sigla PATA)
ATA-1.
ATA-2, soporta transferencias rápidas en bloque y multiword DMA.
ATA-3, es el ATA-2 revisado y mejorado. Todos los anteriores soportan velocidades de 16 MB/s.
ATA-4, conocido como Ultra-DMA o ATA-33, que soporta transferencias en 33 MB/s.
ATA-5 o Ultra ATA/66, originalmente propuesta por Quantum para transferencias en 66 MB/s.
ATA-6 o Ultra ATA/100, soporte para velocidades de 100 MB/s.
ATA-7 o Ultra ATA/133, soporte para velocidades de 133 MB/s.
ATA-8 o Ultra ATA/166, soporte para velocidades de 166 MB/s.
Serial ATA, remodelación de ATA con nuevos conectores (alimentación y datos), cables, tensión de alimentación y conocida comúnmente como SATA, soporta velocidades de 150 y 300 MB/s.
Ata over ethernet implementación sobre Ethernet de comandos ATA para montar una red SAN. Se presenta como alternativa a iSCSI
En un primer momento, las controladoras IDE iban como tarjetas de ampliación, mayoritariamente ISA, y sólo se integraban en la placa madre de equipos de marca como IBM, Dell o Commodore. Su versión más extendida eran las tarjetas multi I/O, que agrupaban las controladores IDE y de disquete, así como los puertos RS-232 y el puerto paralelo, y sólo modelos de gama alta incorporaban zócalos y conectores SIMM para cachear el disco. La integración de dispositivos trajo consigo que un solo chip fuera capaz de desempeñar todo el trabajo.

Con la aparición del bus PCI, las controladoras IDE casi siempre están incluidas en la placa base, inicialmente como un chip, para pasar a formar parte del chipset. Suele presentarse como dos conectores para dos dispositivos cada uno. De los dos discos duros, uno tiene que estar como esclavo y el otro como maestro para que la controladora sepa a/de qué dispositivo mandar/recibir los datos. La configuración se realiza mediante jumpers. Habitualmente, un disco duro puede estar configurado de una de estas tres formas:

Como Maestro ('Master'). Si es el único dispositivo en el cable, debe tener esta configuración, aunque a veces también funciona si está como esclavo. Si hay otro dispositivo, el otro debe estar como esclavo.
Como Esclavo ('slave'). Debe haber otro dispositivo que sea maestro.
Selección por cable (cable select). El dispositivo será maestro o esclavo en función de su posición en el cable. Si hay otro dispositivo, también debe estar configurado como cable select. Si el dispositivo es el único en el cable, debe estar situado en la posición de maestro. Para distinguir el conector en el que se conectará el primer bus Ide (Ide 1) se utilizan colores distintos.
Este diseño (dos dispositivos a un bus) tiene el inconveniente de que mientras se accede a un dispositivo el otro dispositivo del mismo conector IDE no se puede usar. En algunos chipset (Intel FX triton) no se podría usar siquiera el otro IDE a la vez.

Este inconveniente está resuelto en S-ATA y en SCSI, que pueden usar dos dispositivos por canal.

Los discos IDE están mucho más extendidos que los SCSI debido a su precio mucho más bajo. El rendimiento de IDE es menor que SCSI pero se están reduciendo las diferencias. El UDMA hace la función del Bus Mastering en SCSI con lo que se reduce la carga de la CPU y aumenta la velocidad y el Serial ATA permite que cada disco duro trabaje sin interferir a los demás.

De todos modos aunque SCSI es superior se empieza a considerar la alternativa S-ATA para sistemas informáticos de gama alta ya que su rendimiento no es mucho menor y su diferencia de precio sí resulta más ventajosa.

MUSICA Y VIDEO

VIDEO




MUSICA

CARACTERISTICAS CD


Detalles físicos

A pesar de que puede haber variaciones en la composición de los materiales empleados en la fabricación de los discos, todos siguen un mismo patrón: los discos compactos se hacen de un disco grueso, de 1,2 milímetros, de policarbonato de plástico, al que se le añade una capa reflectante de aluminio, utilizada para obtener más longevidad de los datos, que reflejará la luz del láser (en el rango espectro infrarrojo y por tanto no apreciable visualmente); posteriormente se le añade una capa protectora de laca, misma que actúa como protector del aluminio y, opcionalmente, una etiqueta en la parte superior. Los métodos comunes de impresión en los CD son la serigrafía y la impresión Offset. En el caso de los CD-R y CD-RW se usa oro, plata y aleaciones de las mismas que por su ductilidad permite a los láseres grabar sobre ella, cosa que no se podría hacer sobre el aluminio con láseres de baja potencia.

Especificaciones


Lente óptica de un lector.Velocidad de la exploración: 1,2–1,4 m/s, equivale aproximadamente a entre 500 rpm (revoluciones por minuto) y 200 rpm, en modo de lectura CLV (Constant Linear Velocity, 'Velocidad Lineal Constante').
Distancia entre pistas: 1,6 µm.
Diámetro del disco: 120 u 80 mm.
Grosor del disco: 1,2 mm.
Radio del área interna del disco: 25 mm.
Radio del área externa del disco: 58 mm.
Diámetro del orificio central: 15 mm.
Tipos de disco compacto:
Sólo lectura: CD-ROM (Compact Disc - Read Only Memory).
Grabable: CD-R (Compact Disc - Recordable).
Regrabable: CD-RW (Compact Disc - Re-Writable).
De audio: CD-DA (Compact Disc - Digital Audio).
Un CD de audio se reproduce a una velocidad tal que se leen 150 KB por segundo. Esta velocidad base se usa como referencia para identificar otros lectores como los de ordenador, de modo que si un lector indica 24x, significa que lee 24 x 150 kB = 3.600 kB/s, aunque se ha de considerar que los lectores con indicación de velocidad superior a 4x no funcionan con velocidad angular variable como los lectores de CD-DA, sino que emplean velocidad de giro constante, siendo el radio obtenible por la fórmula anterior el máximo alcanzable (esto es, al leer los datos grabados junto al borde exterior del disco).

El área del disco es de 86,05 cm², de modo que la longitud del espiral grabable será de 86,05/1,6 = 5,38 km. Con una velocidad de exploración de 1,2 m/s, el tiempo de duración de un CD-DA es 80 minutos, o alrededor de 700 MB de datos. Si el diámetro del disco en vez de 120 milímetros fuera 115 mm, el máximo tiempo de duración habría sido 68 minutos, es decir, 12 minutos menos.

CARACTERISTICAS DVD

Características principales de un disco DVD

DVD: Digital Video Disc ó Digital Versatile Disc

El primer reproductor de DVD golpeó el mercado en marzo 1997. Un DVD es muy similar a un CD, pero tiene una capacidad de datos mucho más grande. Un DVD usual soporta más datos que un CD, aproximadamente siete veces mas. Esta capacidad inmensa quiere decir que un DVD tiene mucho mas espacio para almacenar una película.

Aquí están los típicos contenidos de una película de DVD:

* Hasta 133 minutos de video de alta resolución, con 720 puntos de la resolución horizontal (la proporción de compresión de video es típicamente 40: 1 usando compresión de MPEG - 2.)

* La banda sonora presentada en hasta ocho lenguas que usan 5.1 digital de Dolby Surround Subtitulada en hasta 32 lenguas.

Un DVD también puede ser usado para guardar casi ocho horas de la música de un CD, por cada lado.

El formato brinda muchas ventajas sobre cintas de VHS:

* La calidad de la fotografía del DVD es mejor, y muchos de los DVD tienen Sonido Dolby Digital o DTS de Dolby, que está mucho más cerca del sonido que usted experimenta en un cine.

* Muchas películas de DVD tienen un índice en pantalla, donde el creador del DVD ha etiquetado muchas de las partes importantes de la película, a veces con una imagen, pudiendo ver el "track" del DVD que ud. quiera.

*Los reproductores de DVD son compatibles con CDs de sonido. Las películas en DVD podrían tener algunas bandas sonoras en el propio DVD, y también pueden proveer los subtítulos en diversos lenguajes. Las películas extranjeras pueden darle la elección (a usted) entre la versión doblada en su lengua, o la banda sonora original con los subtítulos en su lengua.

Formatos de DVD:

* DVD-ROM: método de almacenamiento de sólo lectura de alta capacidad.
* DVD-Vídeo: almacenamiento digital para películas.
* DVD-Audio: similar al CD-Audio (mayor capacidad).
* DVD-R: para una sola grabación y múltiples lecturas; similar al CD-R.
* DVD-RAM: variante grabable y regrabable del DVD; similar al CD-RW.

Fabricación de un DVD:

Se requieren dos moldes para hacer un disco DVD, que consta de dos discos de 0'6mm pegados, que se unen en un proceso de unión en caliente para los de una capa y con un proceso de unión UV para los de dos capas. En los de doble capa, se añade una capa semi-reflectante para que se puedan leer ambas capas desde una misma cara del disco.

El secreto para la alta capacidad en una superficie igual a la de los CDs es que el tamaño mínimo de una marca en un DVD de una cara es de 0'44 micrones, frente a las 0'83 micrones del CD; además, la distancia entre marcas es de 0'74 micrones, frente a las 1'6 micrones para el CD. Todo ello da lugar a la posibilidad de hacer hasta 4 veces más marcas que en un CD, es decir, a mayor densidad de datos, o lo que es lo mismo, mayor capacidad.

El tamaño más pequeño de cada marca, por tanto, implica también un láser de menor longitud de onda, que en el DVD es de 635 a 650 nanómetros, frente a los 780 nanómetros del láser del CD.

Otra característica importante es que la segunda capa de datos del disco DVD puede leerse desde la misma cara que la primera capa o desde la cara contraria, pero los datos se almacenan en una pista espiral inversa, de modo que el láser solamente tiene que hacer un pequeño ajuste muy rápido para leer la segunda capa.

CARACTERISTICAS DE DISCO DURO

Características de un disco duro :

Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.

Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.

Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.

Otras características son:

Caché de pista: Es una memoria tipo RAM dentro del disco duro. Los discos duros de estado sólido utilizan cierto tipo de memorias construidas con semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limita a las supercomputadoras, por su elevado precio.

Interfaz: Medio de comunicación entre el disco duro y la computadora. Puede ser IDE/ATA, SCSI, SATA, USB, Firewire, SAS

Landz: Zona sobre las que aterrizan las cabezas una vez apagada la computadora.

LECTORES DE MEMORIA


QUE ES UN LECTOR DE TARJETAS DE MEMORIA.



Un lector de tarjetas de memoria es un dispositivo que se utiliza para leer y pasar los datos de una memoria del tipo Flash (SD, MMC, SM, etc.) al ordenador.

Estos dispositivos pueden ser tanto internos (como el que se muestra en la imagen) como externos. En ocasiones incorporan además de los lectores de tarjetas puertos USB o FireWire, habiéndolos que incorporan más conectores.

Los lectores de tarjetas se conectan a puertos USB, ya sean internos o externos.

Hay unas variantes de estos lectores que son de tipo portable y solo suelen admitir un tipo de tarjetas, como el que vemos en la imagen inferior.



Existen también lectores de tarjetas específicos para leer las tarjetas SIM de los teléfonos móviles.

DISQUETE


DISQUETE

Un disquete o disco flexible (en inglés floppy disk o diskette) es un medio o soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una cubierta de plástico cuadrada o rectangular.


Lector de discos 3 1/2.Los disquetes se leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). En algunos casos es un disco menor que el CD. La disquetera es el dispositivo o unidad lectora/grabadora de disquetes, y ayuda a introducirlo para guardar la información.

Este tipo de dispositivo de almacenamiento es vulnerable a la suciedad y los campos magnéticos externos, por lo que, en muchos casos, deja de funcionar con el tiempo.

CD


CD ROOM


Un CD-ROM (siglas del inglés Compact Disc - Read Only Memory, "Disco Compacto - Memoria de Sólo Lectura"), es un disco compacto utilizado para almacenar información no volátil, el mismo medio utilizado por los CD de audio, puede ser leído por un computador con lectora de CD. Un CD-ROM es un disco de plástico plano con información digital codificada en una espiral desde el centro hasta el borde exterior.

El denominado Yellow Book (o Libro Amarillo) que define el CD-ROM estándar fue establecido en 1985 por Sony y Philips. Pertenece a un conjunto de libros de colores conocido como Rainbow Books que contiene las especificaciones técnicas para todos los formatos de discos compactos.

Microsoft y Apple Computer fueron entusiastas promotores del CD-ROM. John Sculley, que era CEO de Apple, dijo en 1987 que el CD-ROM revolucionaría el uso de computadoras personales.

La Unidad de CD-ROM debe considerarse obligatoria en cualquier computador que se ensamble o se construya actualmente, porque la mayoría del software se distribuye en CD-ROM. Algunas de estas unidades leen CD-ROM y graban sobre los discos compactos de una sola grabada(CD-RW). Estas unidades se llaman quemadores, ya que funcionan con un láser que "quema" la superficie del disco para grabar la información.

Actualmente, aunque aún se utilizan, están empezando a caer en desuso desde que empezaron a ser sustituidos por unidades de DVD. Esto se debe principalmente a las mayores posibilidades de información, ya que un DVD-ROM excede en capacidad a un CD-ROM.

DVD


DVD

El DVD, cuyas siglas corresponden a digital versatile disc o disco versátil digital, es un dispositivo de almacenamiento óptico cuyo estándar surgió en 1995.

El nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y borrar las veces que se quiera). También difieren en la capacidad de almacenamiento de cada uno de los tipos.

DISCO DURO




DISCO DURO

Un disco duro o disco rígido (en inglés hard disk drive) es un dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.

Tal y como sale de fábrica, el disco duro no puede ser utilizado por un sistema operativo. Antes se deben definir en él un formato de bajo nivel, una o más particiones y luego hemos de darles un formato que pueda ser entendido por nuestro sistema.

También existe otro tipo de discos denominados de estado sólido que utilizan cierto tipo de memorias construidas con semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limitaba a las supercomputadoras, por su elevado precio, aunque hoy en día ya se puede encontrar en el mercado unidades mucho más económicas de baja capacidad (hasta 512[1] GB) para el uso en computadoras personales (sobre todo portátiles). Así, el caché de pista es una memoria de estado sólido, tipo memoria RAM, dentro de un disco duro de estado sólido.

Su traducción del inglés es unidad de disco duro, pero este término es raramente utilizado, debido a la practicidad del término de menor extensión disco duro (o disco rígido).







MANTENIMINETO DE COMPUTADORAS

martes, 20 de abril de 2010

mantenimiento de computadoras


INTRODUCCIÓN

El mantenimiento del computador es aquel que debemos realizar al computador cada cierto tiempo, bien sea para corregir fallas existentes o para prevenirlas.

El periodo de mantenimiento depende de diversos factores: la cantidad de horas diarias de operación, el tipo de actividad (aplicaciones) que se ejecutan, el ambiente donde se encuentra instalada (si hay polvo, calor, etc.), el estado general (si es un equipo nuevo o muy usado), y el resultado obtenido en el último mantenimiento.

Una PC de uso personal, que funcione unas cuatro horas diarias, en un ambiente favorable y dos o menos años de operación sin fallas graves, puede resultar aconsejable realizar su mantenimiento cada dos o tres meses de operación, aunque algunas de las actividades de mantenimiento pudieran requerir una periodicidad menor.

En cambio si la PC se usa más de 4 horas diarias, tiene mucho tiempo de operación, se recomienda hacer un mantenimiento por lo menos una vez al mes.

No debe considerarse dentro de esta actividad la limpieza externa y el uso sistemático de cubiertas protectoras de polvo, insectos y suciedad ambiental, ni tampoco la realización de copias de seguridad (backup), o la aplicación de barreras anti-virus, proxies o cortafuegos (firewalls) que dependen de las condiciones específicas de operación y entorno ambiental.

MANTENIMIENTO DEL PC

Se puede definir Mantenimiento del PC como una serie de rutinas periódicas que debemos realizar a la PC, necesarias para que la computadora ofrezca un rendimiento óptimo y eficaz a la hora de su funcionamiento. De esta forma podemos prevenir o detectar cualquier falla que pueda presentar el computador.

RAZONES PARA HACER UN MANTENIMIENTO AL PC

Las computadoras funcionan muy bien y están protegidas cuando reciben mantenimiento. Si no se limpian y se organizan con frecuencia, el disco duro se llena de información, el sistema de archivos se desordena y el rendimiento general disminuye.

Si no se realiza periódicamente un escaneo del disco duro para corregir posibles errores o fallas, una limpieza de archivos y la desfragmentación del disco duro, la información estará más desprotegida y será más difícil de recuperar.

El mantenimiento que se debe hacer, se puede resumir en tres aspectos básicos importantes, los cuales son:

  1. Diagnóstico.
  2. Limpieza.
  3. Desfragmentación.

DIAGNOSTICO

La computadora trabaja más de lo que normalmente se cree. Está constantemente dando prioridad a las tareas, ejecutando órdenes y distribuyendo la memoria.

Sin embargo, con el tiempo ocurren errores en el disco duro, los datos se desorganizan y las referencias se vuelven obsoletas.

Estos pequeños problemas se acumulan y ponen lento el sistema operativo, las fallas del sistema y software ocurren con más frecuencia y las operaciones de encendido y apagado se demoran más.

Para que el sistema funcione adecuadamente e incluso para que sobre todo no se ponga tan lento, se debe realizar un mantenimiento periódico.

Asegurándonos de incluir en la rutina del mantenimiento estas labores:

  • Exploración del disco duro para saber si tiene errores y solucionar los sectores alterados.
  • Limpieza de archivos.
  • Desfragmentación el disco duro.

LIMPIEZA

Para garantizar un rendimiento optimo y eficaz de la computadora, debemos mantenerla limpia y bien organizada.

Debemos eliminar los programas antiguos, programas que no utilicemos y las unidades de disco para liberar la memoria y reducir la posibilidad de conflicto del sistema.

Un disco duro puede presentar diversas deficiencias, que casi siempre se pueden corregir estas son:

  1. Poco espacio disponible.
  2. Espacio ocupado por archivos innecesarios.
  3. Alto porcentaje de fragmentación.

Se debe eliminar los archivos antiguos y temporales. Además, entre más pocos archivos innecesarios tenga la computadora, estará más protegida de amenazas como el hurto de la identidad en Internet.

Cuando el espacio libre de un disco se acerca peligrosamente a cero, la PC entra en una fase de funcionamiento errático: se torna excesivamente lenta, emite mensajes de error (que en ocasiones no especifican la causa), algunas aplicaciones no se inician, o se cierran después de abiertas, etc.

Como factor de seguridad aceptable, el espacio vacío de un disco duro no debe bajar del 10% de su capacidad total, y cuando se llega a este límite deben borrarse archivos innecesarios, o desinstalar aplicaciones que no se usen, o comprimir archivos.

Todas las aplicaciones de Windows generan archivos temporales.

Estos archivos se reconocen por la extensión .tmp y generalmente existe uno o varios directorios donde se alojan.

En condiciones normales, las aplicaciones que abren archivos temporales deben eliminarlos cuando la aplicación concluye, pero esto a veces no sucede cuando se concluye en condiciones anormales, o Windows "se cuelga" o por una deficiente programación de la aplicación.

Estos archivos temporales deben borrarse del disco duro.

Existen otro tipo de archivos que pueden borrarse, y no son temporales: la papelera de reciclaje, el caché de Internet ( windows\temporary internet files) y algunas carpetas que permanecen el disco después que se baja o se instala un programa.

El caché de Internet debe borrarse si resulta estrictamente necesario, ya que después de borrado no podrán verse las páginas visitadas sin estar conectado.

Debe hacerse mediante la función explícita del navegador, y además ajustarse el tamaño del caché.

Un usuario experimentado puede intentar otras posibilidades, como por ejemplo eliminar DLL duplicadas, instaladores, datos de aplicaciones desinstaladas, etc.

Debe obrar con mucho cuidado cuando haga esta "limpieza profunda" y si no hay plena seguridad de que un archivo en cuestión puede ser borrado, no debe eliminarlo de la papelera de reciclaje hasta comprobarlo, pudiendo reponerse a su ubicación original si resultara necesario.

En general lo que se debe realizar son estas labores:

  • Eliminar los programas antiguos y archivos temporales.
  • Eliminar la información obsoleta
  • Asegurarnos de guardar de manera segura la información.
  • Eliminar las entradas de registro inválidas y los accesos directos dañados.

DESFRAGMENTACIÓN

De todos los componentes de una PC, el disco duro es el más sensible y el que más requiere un cuidadoso mantenimiento.

La detección precoz de fallas puede evitar a tiempo un desastre con pérdida parcial o total de información (aunque este evento no siempre puede detectarse con anticipación).

  • Alto porcentaje de fragmentación: Durante el uso de una PC existe un ininterrumpido proceso de borrado de archivos e instalación de otros nuevos.

Estos se instalan a partir del primer espacio disponible en el disco y si no cabe se fracciona, continuando en el próximo espacio vacío.

Un índice bajo de fragmentación es tolerable e imperceptible, pero en la medida que aumenta, la velocidad disminuye en razón del incremento de los tiempos de acceso al disco ocasionado por la fragmentación, pudiendo hacerse notable.

Todas las versiones de Windows incluyen el desfragmentador de disco.

El proceso de desfragmentación total consume bastante tiempo (en ocasiones hasta horas), y aunque puede realizarse como tarea de fondo no resulta conveniente la ejecución simultanea de otro programa mientras se desfragmenta el disco, debiendo desactivarse también el protector de pantalla.

CONCLUSIÓN

El problema es que las computadoras se han vuelto tan confiables y convenientes, que damos por hecho su operación eficaz.

Sin embargo, al igual que una casa o un automóvil, las computadoras ocasionalmente requieren atención.

Si se realiza las siguientes labores de mantenimiento con frecuencia la computadora funcionará de manera segura y sin problemas:

  1. Diagnóstico.
  2. Limpieza.
  3. Desfragmentación.

De todos los componentes de una PC, el disco duro es el más sensible y el que más requiere un cuidadoso mantenimiento.

Por esta razón periódicamente debemos utilizar el Scandisk u otro utilitario para detectar si hay errores en el disco duro, y de haberlos tratar de repararlo.

Una vez esto hecho procedemos a realizar una limpieza profunda de todos los archivos innecesarios que ponen lento al sistema, tales archivos son: programas antiguos, archivos temporales de internet, instaladores de programas, entrada de registros inválidas, accesos directos dañados, los archivos contenido en la papelera de reciclaje, entre otros.

De esta manera conseguiremos una PC más rápida, eficiente, optima, segura y menos propensa a perder información.


GLOSARIO

GLOSARIO

BIT: (dígito binario) un dígito simple de un numero binario (1 ó 0)

BYTE: Grupo de bits adyacentes operados como una unidad,

COMPILADOR: Programa de computadora que produce un programa en lenguaje de maquina, de un programa fuente que generalmente esta escrito por el programador en un lenguaje de alto nivel.

CÓDIGO MAQUINA: para que se pueda ejecutar un programa, debe estar en lenguaje de maquina de la computadora que lo esta ejecutando.

CHIP: 1. Pastilla. 2. Plaqueta. 3. Pequeña pieza de silicio o algún otro material semiconductor, que contiene en su interior un circuito integrado. Por su propia naturaleza, chip es sinónimo de circuito integrado.

CIRCUITO INTEGRADO: 1. Chip 2. Sistema de circuitos interrelacionados, almacenados en una pequeña tableta o pastilla de silicio.

COMPUTADORA: Máquina o dispositivo capaz de recibir información, procesarla y entregar resultados en la forma deseada. 2. Equipo electrónico (Hardware) que recibe instrucciones en forma de pro gramas (Software) para resolver diferentes tareas utilizando algoritmos.

COMPUTADORA DIGITAL: Computadora que opera sobre datos discretos o discontinuos; en otras palabras, sobre dígitos binarios (ceros y unos) representados por impulsos eléctricos. Esto contrasta con las computadoras analógicas, las cuales operan sobre variables continuas como la temperatura o la presión estableciendo analogías entre las variaciones y los datos. La mayoría de las computadoras actuales son de tipo digital.

COMPUTADORA PERSONAL (PC): Microcomputadora destinada a trabajo individual o de escritorio. 2. Sistema individual de escritorio, portátil o de portafolio que consta de monitor, unidad central de procesamiento y teclado. El nombre de Personal Computer (PC) lo dio IBM a sus microcomputadoras de escritorio, y es como se conoce a las computadoras con tecnología IBM y a sus clones o compatibles. Actualmente tienen una gran capacidad de procesamiento, comparable con las minis o macro computadoras utilizadas por bancos, centros de investigación e industria en general.

DATOS: Símbolos, letras, números o hechos aislados que pueden ser leídos y procesados por una computadora para producir información.

EQUIPO HARDWARE: Componentes mecánicos, eléctricos, magnéticos y electrónicos de una computadora o sistema de cómputo. 2. Los componentes físicos de un sistema de cómputo, en contrapartida con el software, que es intangible.

FIBRA ÓPTICA: Delgadísimo filamento transparente hecho de material dieléctrico como vidrio o plástico, que tiene una enorme capacidad de transmisión de la luz mediante impulsos luminosos; esto es, en comunicaciones se está en posibilidad de transmitir millones de bits por segundo utilizando estos útiles medios.

HARDWARE: Es la parte tangible del computador.

INFORMACION: Es lo que se obtiene del procesamiento de datos, es el resultado final.

INFORMÁTICA: El término es acrónimo de INFORmación au toMATICA, que significa: todo aquello que tiene relación con el procesamiento de datos, utilizando las computadoras o los equipos de procesamiento automático de información. En Estados Unidos no es muy conocido el término, que se toma como sinónimo de lnformation Technology (IT).

INTELIGENCIA ARTIFICIAL (Al): 1. Rama de la ciencia de la computación que intenta entender la naturaleza de la inteligencia para producir nuevos tipos de máquinas o programas inteligentes. 2. Emulación mediante sistemas de cómputo, de situaciones asociadas con la inteligencia y el comportamiento humanos como el razonamiento, el aprendizaje y la auto-superación.

LENGUAJE BINARIO: Código o len guaje utilizado en computación, en el cual la codificación de datos se realiza únicamente mediante bits; es decir unos y ceros.

MICROCOMPUTADORA: Pequeña computadora que utiliza uno o más microprocesadores para realizarlos procesos de cálculo. Generalmente consta de unidades de entrada y salida como teclado y monitor respectivamente, y unidades de almacenamiento secundario de información.

MICROPROCESADOR: Unidad Central de Procesamiento (CPU) de una computadora, ubicada en el interior de uno o varios chips. 2. Pequeño y complejo procesador central de una computadora compuesto de una gran cantidad de microcircuitos encapsulados en una sola unidad.

MULTIPROGRAMACION: En un sistema multiprogramado la memoria principal alberga a más de un programa de usuario.

PROGRAMA: Es una colección de instrucciones que indican a la computadora que debe hacer. Un programa se denomina software, por lo tanto, programa, software e instrucción son sinónimos.

PROGRAMA FUENTE: Instrucción escrita por el programador en un lenguaje de programación para plantear al computador el proceso que debe ejecutar.

PROGRAMACIÓN: Proceso de escribir una secuencia de pasos o instrucciones que permiten resolver un problema o tarea específica, auxiliado por el planteamiento de un algoritmo. 2. Pasos que si siguen para crear un programa: diseño, codificaciòn escritura, modificación, depuración, compilación o inducción del código al lenguaje de la máquina, y del programa.

PROGRAMAS SOFTWARE: lnstrucciones, funciones y comandos que integran un programa para controlar. El software o programa es una creación intelectual que no depende absolutamente del equipo físico sobre el cual trabaja. Es la parte intangible de la computación, pero al fin y al cabo, la parte más importante, porque ninguna computadora hace nada para lo que no haya sido programada. Los programas de propósito específico, como los procesadores de textos o los manejadores de bases de datos se conocen como software de aplicación. Los sistemas operativos constituyen una clase especial de programas de control.

SISTEMA OPERATIVO: Programa o grupo de programas que permiten controlar las operaciones de la computadora.

SISTEMAS EXPERTOS: Sistemas desarrollados mediante las técnicas de inteligencia artificial para resolución de problemas específicos.

SOFTWARE: Conjunto de programas, documentos, procesamientos y rutinas asociadas con la operación de un sistema de computadoras, es decir, la parte intangible de computador.

TUBO DE VACÍO. Tubo electrónico que se utiliza como amplificador o conmutador, controlando el flujo de electrones en su interior, al vacío.

TRANSISTOR: Dispositivo electrónico que sirve como amplificador de señal o controlador de interrupción (conmutador).

TARJETA PERFORADA: Tenía un alambre que pasaba a través de los huecos dentro de una copa de mercurio debajo de la tarjeta, cerrando de este modo el circuito eléctrico. Este proceso disparaba unos contadores mecánicos y ordenaba los recipientes de las tarjetas, tabulando así en forma apropiada la información

5 GENERACION DE COMPUTADORAS

QUINTA GENERACIÓN Y LA INTELIGENCIA ARTIFICIAL (1982-1989)

Cada vez se hace más difícil la identificación de las generaciones de computadoras, porque los grandes avances y nuevos descubrimientos ya no nos sorprenden como sucedió a mediados del siglo XX. Hay quienes consideran que la cuarta y quinta generación han terminado, y las ubican entre los años 1971-1984 la cuarta, y entre 1984-1990 la quinta. Ellos consideran que la sexta generación está en desarrollo desde 1990 hasta la fecha.

Siguiendo la pista a los acontecimientos tecnológicos en materia de computación e informática, podemos puntualizar algunas fechas y características de lo que podría ser la quinta generación de computadoras.

Con base en los grandes acontecimientos tecnológicos en materia de microelectrónica y computación (software) como CADI CAM, CAE, CASE, inteligencia artificial, sistemas expertos, redes neuronales, teoría del caos, algoritmos genéticos, fibras ópticas, telecomunicaciones, etc., a de la década de los años ochenta se establecieron las bases de lo que se puede conocer como quinta generación de computadoras.

Hay que mencionar dos grandes avances tecnológicos, que sirvan como parámetro para el inicio de dicha generación: la creación en 1982 de la primera supercomputadora con capacidad de proceso paralelo, diseñada por Seymouy Cray, quien ya experimentaba desde 1968 con supercomputadoras, y que funda en 1976 la Cray Research Inc.; y el anuncio por parte del gobierno japonés del proyecto "quinta generación", que según se estableció en el acuerdo con seis de las más grandes empresas japonesas de computación, debería terminar en 1992.

El proceso paralelo es aquél que se lleva a cabo en computadoras que tienen la capacidad de trabajar simultáneamente con varios microprocesadores. Aunque en teoría el trabajo con varios microprocesadores debería ser mucho más rápido, es necesario llevar a cabo una programación especial que permita asignar diferentes tareas de un mismo proceso a los diversos microprocesadores que intervienen.

También se debe adecuar la memoria para que pueda atender los requerimientos de los procesadores al mismo tiempo. Para solucionar este problema se tuvieron que diseñar módulos de memoria compartida capaces de asignar áreas de caché para cada procesador.

Según este proyecto, al que se sumaron los países tecnológicamente más avanzados para no quedar atrás de Japón, la característica principal sería la aplicación de la inteligencia artificial (Al, Artificial Intelligence). Las computadoras de esta generación contienen una gran cantidad de microprocesadores trabajando en paralelo y pueden reconocer voz e imágenes. También tienen la capacidad de comunicarse con un lenguaje natural e irán adquiriendo la habilidad para tomar decisiones con base en procesos de aprendizaje fundamentados en sistemas expertos e inteligencia artificial.

El almacenamiento de información se realiza en dispositivos magneto ópticos con capacidades de decenas de Gigabytes; se establece el DVD (Digital Video Disk o Digital Versatile Disk) como estándar para el almacenamiento de video y sonido; la capacidad de almacenamiento de datos crece de manera exponencial posibilitando guardar más información en una de estas unidades, que toda la que había en la Biblioteca de Alejandría. Los componentes de los microprocesadores actuales utilizan tecnologías de alta y ultra integración, denominadas VLSI (Very Large Sca/e Integration) y ULSI (Ultra Lar- ge Scale Integration).

Sin embargo, independientemente de estos "milagros" de la tecnología moderna, no se distingue la brecha donde finaliza la quinta y comienza la sexta generación. Personalmente, no hemos visto la realización cabal de lo expuesto en el proyecto japonés debido al fracaso, quizás momentáneo, de la inteligencia artificial.

El único pronóstico que se ha venido realizando sin interrupciones en el transcurso de esta generación, es la conectividad entre computadoras, que a partir de 1994, con el advenimiento de la red Internet y del World Wide Web, ha adquirido una importancia vital en las grandes, medianas y pequeñas empresas y, entre los usuarios particulares de computadoras.

El propósito de la Inteligencia Artificial es equipar a las Computadoras con "Inteligencia Humana" y con la capacidad de razonar para encontrar soluciones. Otro factor fundamental del diseño, la capacidad de la Computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la Computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la Computadora aprenderá a partir de sus propias experiencias usará sus Datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones.

4 GENRACION DE LAS COMPUTADORAS

CUARTA GENERACION DE COMPUTADORAS(1971-1981)

Microprocesador , Chips de memoria, Microminiaturización

Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC)

En 1971, intel Corporation, que era una pequeña compañía fabricante de semiconductores ubicada en Silicon Valley, presenta el primer microprocesador o Chip de 4 bits, que en un espacio de aproximadamente 4 x 5 mm contenía 2 250 transistores. Este primer microprocesador que se muestra en la figura 1.14, fue bautizado como el 4004.

Silicon Valley (Valle del Silicio) era una región agrícola al sur de la bahía de San Francisco, que por su gran producción de silicio, a partir de 1960 se convierte en una zona totalmente industrializada donde se asienta una gran cantidad de empresas fabricantes de semiconductores y microprocesadores. Actualmente es conocida en todo el mundo como la región más importante para las industrias relativas a la computación: creación de programas y fabricación de componentes.

Actualmente ha surgido una enorme cantidad de fabricantes de microcomputadoras o computadoras personales, que utilizando diferentes estructuras o arquitecturas se pelean literalmente por el mercado de la computación, el cual ha llegado a crecer tanto que es uno de los más grandes a nivel mundial; sobre todo, a partir de 1990, cuando se logran sorprendentes avances en Internet.

Esta generación de computadoras se caracterizó por grandes avances tecnológicos realizados en un tiempo muy corto. En 1977 aparecen las primeras microcomputadoras, entre las cuales, las más famosas fueron las fabricadas por Apple Computer, Radio Shack y Commodore Busíness Machines. IBM se integra al mercado de las microcomputadoras con su Personal Computer (figura 1.15), de donde les ha quedado como sinónimo el nombre de PC, y lo más importante; se incluye un sistema operativo estandarizado, el MS- DOS (MicroSoft Disk Operating System).

Las principales tecnologías que dominan este mercado son:

IBM y sus compatibles llamadas clones, fabricadas por infinidad de compañías con base en los procesadores 8088, 8086, 80286, 80386, 80486, 80586 o Pentium, Pentium II, Pentium III y Celeron de Intel y en segundo término Apple Computer, con sus Macintosh y las Power Macintosh, que tienen gran capacidad de generación de gráficos y sonidos gracias a sus poderosos procesadores Motorola serie 68000 y PowerPC, respectivamente. Este último microprocesador ha sido fabricado utilizando la tecnología RISC (Reduced Instruc tion Set Computing), por Apple Computer Inc., Motorola Inc. e IBM Corporation, conjuntamente.

Los sistemas operativos han alcanzado un notable desarrollo, sobre todo por la posibilidad de generar gráficos a gran des velocidades, lo cual permite utilizar las interfaces gráficas de usuario (Graphic User Interface, GUI), que son pantallas con ventanas, iconos (figuras) y menús desplegables que facilitan las tareas de comunicación entre el usuario y la computadora, tales como la selección de comandos del sistema operativo para realizar operaciones de copiado o formato con una simple pulsación de cualquier botón del ratón (mouse) sobre uno de los iconos o menús.

3 GENERACION DE LAS COMPUTADORAS

TERCERA GENERACION (1964-1971)

Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora .

Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.

El descubrimiento en 1958 del primer Circuito Integrado (Chip) por el ingeniero Jack S. Kilby (nacido en 1928) de Texas Instruments, así como los trabajos que realizaba, por su parte, el Dr. Robert Noyce de Fairchild Semicon ductors, acerca de los circuitos integrados, dieron origen a la tercera generación de computadoras.

Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.

La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos.

IBM marca el inicio de esta generación, cuando el 7 de abril de 1964 presenta la impresionante IBM 360, con su tecnología SLT (Solid Logic Technology). Esta máquina causó tal impacto en el mundo de la computación que se fabricaron más de

30000, al grado que IBM llegó a conocerse como sinónimo de computación.

También en ese año, Control Data Corporation presenta la supercomputadora CDC 6600, que se consideró como la más poderosa de las computadoras de la época, ya que tenía la capacidad de ejecutar unos 3 000 000 de instrucciones por segundo (mips).

Se empiezan a utilizar los medios magnéticos de almacenamiento, como cintas magnéticas de 9 canales, enormes discos rígidos, etc. Algunos sistemas todavía usan las tarjetas perforadas para la entrada de datos, pero las lectoras de tarjetas ya alcanzan velocidades respetables.

Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).

Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron sumador auge entre 1960 y 70.

2 GENERACION DE LAS COMPUTADORAS


SEGUNDA GENERACIÓN (1959-1964)

El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

Los programas de computadoras también mejoraron. El COBOL (COmmon Busines Oriented Languaje) desarrollado durante la 1era generación estaba ya disponible comercialmente, este representa uno de os mas grandes avances en cuanto a portabilidad de programas entre diferentes computadoras; es decir, es uno de los primeros programas que se pueden ejecutar en diversos equipos de computo después de un sencillo procesamiento de compilación. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. Grace Murria Hooper (1906-1992), quien en 1952 habia inventado el primer compilador fue una de las principales figuras de CODASYL (Comité on Data SYstems Languages), que se encago de desarrollar el proyecto COBOL El escribir un programa ya no requería entender plenamente el hardware de la computación. Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.

La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.

Algunas de las computadoras que se construyeron ya con transistores fueron la IBM 1401, las Honeywell 800 y su serie 5000, UNIVAC M460, las IBM 7090 y 7094, NCR 315, las RCA 501 y 601, Control Data Corporation con su conocido modelo CDC16O4, y muchas otras, que constituían un mercado de gran competencia, en rápido crecimiento. En esta generación se construyen las supercomputadoras Remington Rand UNIVAC LARC, e IBM Stretch (1961).

2 GENERACION DE LAS COMPUTADORAS

1 GENERACION DE LAS COMPUTADORAS


Primera generación de computadoras:

La primera generación de computadoras electrónicas ocurrió a partir de 1945 y duró aproximadamente hasta 1956. Una de las primeras computadoras que se construyeron fue la llamada ENIAC (Electronic Numeric Integrator And Calculator), construida en 1945 por la Universidad de Pensilvania, en los Estados Unidos de América, y el propósito para su construcción fue realizar cálculos con fines bélicos, durante la segunda guerra mundial.

Las computadoras de la primera generación se caracterizaron por tener varios problemas en común. Todos estos problemas tienen que ver con:

· Tamaño: Las computadoras de la primera generación eran enormes. La ENIAC pesaba 30 toneladas y se requería todo un edificio para alojarla. Tenía 18,000 bulbos, 70,000 resistencias y 5.000.000 soldaduras.

· Precio: Las computadoras de esta generación costaban tanto dinero que casi nadie podía comprarlas, solamente las más grandes instituciones gubernamentales y unas pocas universidades, pues el costo estaba en el orden de los millones de dólares.

· Consumo de energía: Esta clase de computadoras gastaba muchísima energía eléctrica, alrededor de 200 KW/h, de modo que cuando la ENIAC funcionaba, toda la ciudad de Philadelphia se enteraba, porque bajaba la corriente eléctrica.

· Poca confiabilidad: Esto se debió principalmente a que los componentes electrónicos con los que estaban construidas estas computadoras, fallaban en promedio cada 7 minutos y medio, lo que obligaba a reiniciar los cálculos en cada evento de esta naturaleza. En ocasiones la computadora arrojaba resultados diferentes en cada corrida, dependiendo de qué bulbo (o componente) estaba dañado.
Primera generación de computadoras


En 1946, John von Neumann, quien fue pionero en las ciencias computacionales, estudió e hizo significativos aportes al desarrollo del software, de hecho, fue von Neumann quien inventó los diagramas de flujo. Las principales líneas de investigación en la teoría de la programación fueron:

· Las instrucciones y los datos se almacenan en un lugar específico en la computadora, la memoria de lectura y escritura.

· El espacio en memoria era perfectamente distinguible por localidades únicas, nombradas por medio de una dirección.

· Los programas se ejecutaban en forma secuencial, y a su vez, las instrucciones de los programas también se hacían en forma secuencial.

sábado, 17 de abril de 2010

NACHO



Nacho, nuestra mascota, se ha convertido en un ícono de Atlético Nacional, querido por grandes y chicos nos acompaña siempre en todos los partidos de local del club animando a las barras y contagiando de energía positiva a nuestros jugadores que saltan a la cancha animados con todo el fervor nacionalista en pos de un nuevo triunfo.

Su cara bonachona y sus animados movimientos cosquistan la simpatía de los asistentes al estadío pero sin duda alguna son los niños los que mas lo prefieren y desean su presencia.

Nacho tambièn nos acompaña en las actividades de nuestra escuela de futbol donde mas de 1000 niños disfrutan de su presencia y en las Tiendas Verdes lo hace con su dinamismo para entregarle alegrias a los visitantes y compradores.

Para el público en general presta el servicio en las reuniones y fiestas de los niños con módicos precios para que la presencia de nacho haga de la ocasión una fecha inolvidable.

viernes, 16 de abril de 2010

JORGE HUERTAS

Biografia
JORGE HUERTAS
Nacio el 6 de agosto de 1994 en Bello -Antioquia en el hospital de bello.
cumple el 6 de agosto naci en el bientre de mi madre .

mi mama meisner rodriguez y mi padre jorge enrique huertas en el cual son mis padres muy queridos.

mi equipo preferido es el atletico naciona ( medellin) colombia

en mis tiempos de estudio me ha ido muy bien .

en mis tiempos libres juego futbol, juego xbox y salgo con mis amigos.